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A Data

To conduct our empirical analysis we make use of a transaction-level data set containing
detailed information on individual home sales taking place throughout the US between 1995
and 2014. The raw data was purchased from CoreLogic and is sourced from publicly available
tax assessment and deeds records maintained by local county governments. In some analyses
we supplement this transaction-level data with additional data on the listing behavior of
individual homeowners. Our listings data is also provided by CoreLogic and is sourced from
a consortium of local Multiple Listing Service (MLS) boards located throughout the country.

Selecting Geographies

To select our sample of transactions, we first focus on a set of counties that have consistent
data coverage going back to 1995 and which, together, constitute a majority of the housing
stock in their respective MSAs. In particular, to be included in our sample a county must
have at least one “arms length” transaction with a non-negative price and non-missing date
in each quarter from 1995q1 to 2014q4.1 Starting with this subset of counties, we then
further drop any MSA for which the counties in this list make up less than 75 percent of
the total owner-occupied housing stock for the MSA as measured by the 2010 Census. This
leaves us with a final set of 250 counties belonging to a total of 115 MSAs. These MSAs are
listed below in Table IA1 along with the percentage of the housing stock that is represented
by the 250 counties for which we have good coverage. Throughout the paper, when we refer
to counts of transactions in an MSA we are referring to the portion of the MSA that is
accounted for by these counties.

Selecting Transactions

Within this set of MSAs, we start with the full sample of all arms length transactions of single
family, condo, or duplex properties and impose the following set of filters to ensure that our
final set of transactions provides an accurate measure of aggregate transaction volume over
the course of the sample period:

1. Drop transactions that are not uniquely identified using CoreLogic’s transaction ID.

2. Drop transactions with non-positive prices.

1We rely on CoreLogic’s internal transaction-type categorization to determine whether a transaction
occurred at arms length.
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3. Drop transactions that appear to be clear duplicates, identified as follows:

(a) If a set of transactions has an identical buyer, seller, and transaction price but
are recorded on different dates, keep only the earliest recorded transaction in the
set.

(b) If the same property transacts multiple times on the same day at the same price
keep only one transaction in the set.

4. If more than 10 transactions between the same buyer and seller at the same price
are recorded on the same day, drop all such transactions. These transactions appear
to be sales of large subdivided plots of vacant land where a separate transaction is
recorded for each individual parcel but the recorded price represents the price of the
entire subdivision.

5. Drop sales of vacant land parcels in MSAs where the CoreLogic data includes such
sales.2 We define a vacant land sale to be any transaction where the sale occurs a year
or more before the property was built.

Table IA2 shows the number of transactions that are dropped from our sample at each stage
of this process as well as the final number of transactions included in our full analysis sample.

Identifying Occupant and Non-Occupant Buyers

We identify non-occupant buyers using differences between the mailing addresses listed by
the buyer on the purchase deed and the actual physical address of the property itself. In
most cases, these differences are identified using the house numbers from each address. In
particular, if both the mailing address and the property address have a non-missing house
number then we tag any instance in which these numbers are not equal as a non-occupant
purchase and any instance in which they are equal as occupant purchases. In cases where
the mailing address property number is missing we also tag buyers as non-occupants if both
the mailing address and property address street names are non-missing and differ from one
another. Typically, this will pick up cases where the mailing address provided by the buyer
is a PO Box. In all other cases, we tag the transaction as having an unknown occupancy
status.

Restricting the Sample for the Non-Occupant Analysis

Our analysis of non-occupant buyers focuses on the growth of the number of purchases by
these individuals between 2000 and 2005. To be sure that this growth is not due to changes
in the way mailing addresses are coded by the counties comprising the MSAs in our sample,
for the non-occupant buyer analysis we keep only MSAs for which we are confident such
changes do not occur between 2000 and 2005. In particular, we first drop any MSA in which
the share of transactions in any one year between 2000 and 2005 with unknown occupancy
status exceeds 0.5. Of the remaining MSAs, we then drop those for which the increase in the

2MSAs are flagged as including vacant land sales if more then 5 percent of the sales in the MSA occur
more then two years before the year in which the property was built.
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number of non-occupant purchases between any year and the next exceeds 150%, with the
possible base years being those between 2000 and 2005.3 The 102 MSAs that remain after
these two filters are marked with an “x” in columns 3 and 7 of Table IA1.

Restricting the Sample for Listings Analysis

The geographic and time series coverage of the CoreLogic MLS data is not as comprehensive
as the transaction-level data. As a result, our analysis of listings behavior is restricted to a
subset of markets for which we can be relatively certain that the MLS data is representative
of the majority of owner-occupied home sales in the area. We impose several filters to
identify this subset of MSAs. First, starting with the full set of 115 MSAs contained in
the transaction-level data, we drop any MSA for which there is not at least one new listing
in every month and in every county subcomponent of the MSA between January 2000 and
December 2014. Within the remaining set of MSAs we then drop any MSA for which the
number of new listings between 2006 and 2008 is more than 2.5 times the number of new
listings between 2003 and 2005. This filter eliminates MSAs that experience large jumps
in coverage during the quiet. Finally, we also drop any MSA for which the number of sold
listings (from the MLS data) is less than 25 percent of total sales volume (from the transaction
data) over the period 2003-2012. This filter eliminates MSAs for which the listings data is
likely to be unrepresentative of sales activity during our main sample period. This leaves a
final sample of 57 MSAs for our listings analysis. These MSAs are marked with an “x” in
columns 4 and 8 of Table IA1.

Identifying New Construction Sales

In several parts of our analysis we omit new construction sales from the calculation of total
transaction volume. To identify sales of newly constructed homes, we start with the internal
CoreLogic new construction flag and make several modifications to pick up transactions that
may not be captured by this flag. CoreLogic identifies new construction sales primarily using
the name of the seller on the transaction (e.g. “PULTE HOMES” or “ROCKPORT DEV
CORP”), but it is unclear whether their list of home builders is updated dynamically or
maintained consistently across local markets. To ensure consistency, we begin by pulling
the complete list of all seller names that are ever identified with a new construction sale
as defined by CoreLogic. Starting with this list of sellers, we tag any transaction for which
the seller is in this list, the buyer is a human being, and the transaction is not coded as a
foreclosure sale by CoreLogic as a new construction sale. We use the parsing of the buyer
name field to distinguish between human and non-human buyers (e.g. LLCs or financial
institutions). Human buyers have a fully parsed name that is separated into individual first
and name fields whereas non-human buyer’s names are contained entirely within the first
name field.

This approach will identify all new construction sales provided that the seller name is
recognized by CoreLogic as the name of a homebuilder. However, many new construction
sales may be hard to identify simply using the name of the seller. We therefore augment this
definition using information on the date of the transaction and the year that the property

3This step drops only Chicago-Naperville-Elgin, IL-IN-WI.
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was built. In particular, if a property was not already assigned a new construction sale using
the builder name, then we search for sales of that property that occur within one year of
the year that the property was built and record the earliest of such transactions as a new
construction sale.

Finally, for properties that are not assigned a new construction sale using either of the
two above methods, we also look to see if there were any construction loans recorded against
the property in the deeds records. If so, we assign the earliest transaction to have occurred
within three years of the earliest construction loan as a new construction sale. We use a
three-year window to allow for a time lag between the origination of the construction loan
and the actual date that the property was sold. Construction loans are identified using
CoreLogic’s internal deed and mortgage type codes.

B Robustness

B.1 Mechanical Short-Term Volume

In Figure 4 we document a rise in the share of volume coming from short-term sales during
the boom. Our interpretation of this pattern is that short-term volume rises due to a shift
in the composition of buyers toward those with shorter intended holding periods. However,
even in the absence of such a shift, any increase in total volume during the early part of
the boom will generate a mechanical increase in the share of late-boom volume coming from
short-term sales. The richness of our data allows us to quantify the contribution of this
mechanical force relative to changes in the composition of buyers.

For each pair of distinct months between 1995 and 2005, we compute a conditional selling
hazard πt′,t. This hazard is the share of homes purchased in month t′—and that have not
yet sold by month t—that sell in month t. By focusing on selling hazards instead of total
volume, we remove the mechanical force that comes from volume increasing over the cycle.

We estimate the following regression at the month-pair level:

πt′,t = αbuyy(t′) + αselly(t) + αdurationt−t′ + εt′,t,

where y(·) gives the year of the month. The first set of fixed effects, αbuyy(t′), captures the

average propensity of buyer cohorts from year y(t′) to sell in any future year. The second
set of fixed effects, αselly(t), captures the average propensity of all owners to sell in year y(t).

The third set of fixed effects, αdurationt−t′ , measures time-invariant selling hazard profiles as a

function of time elapsed since purchase t− t′. We interpret year-to-year movements in αbuyy(t′)

as changes in the composition of buyers across those years, holding fixed both year-specific
shocks to selling hazards that affect all cohorts equally and duration-specific drivers of selling
hazards that do not vary over the cycle.

Table IA3 reports the buy-year fixed effects estimates for years 2000 to 2005 relative to
2000. The fixed effects are linear differences of a monthly selling hazard, so multiplying by
12 roughly gives the effect on the annualized selling probability. Therefore, buyers in 2005
have a 3.2 percentage point larger annual selling hazard than buyers in 2000 (12 times 0.0027
equals 0.0324).
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We use these estimates to construct counterfactual growth of short-term volume from
2000 to 2005. For each 2000m1 ≤ t′ < t ≤ 2005m12, we construct the counterfactual selling
hazard as

πct′,t = πt′,t −
(
α̂buyy(t′) − α̂

buy
2000

)
,

which subtracts away any increase due to the change in the composition of buyers from 2000
to the year of t′. We then compute the counterfactual of vt′,t, the volume of homes bought
in t′ and sold in t, using the following iterative procedure. Let et′,t count homes bought in t′

that have not yet sold by t, and let c superscripts mark counterfactual values. We initialize
counterfactuals with actuals: for each 1995m1 ≤ t′ < 2005m12,

ect′,t′ = et′,t′

vct′,t′ = vt′,t′ .

We then iteratively update the counterfactuals over t running from t′ + 1 to 2005m12:

ect′,t = ect′,t−1 − vct′,t−1
vct′,t = πct′,te

c
t′,t.

To compute short-term volume in year y, we sum vt′,t across all subscripts for which y(t) = y
and 0 < t−t′ < 36; we sum vct′,t across the same indices for counterfactual short-term volume.

The remaining columns of Table IA3 report the results. Between 2000 and 2005, total
volume grows 36.7% and short-term volume grows 77.5% in the actual data. The dispro-
portionate rise in short-term volume is the difference, 40.8%. Counterfactual short-term
volume rises 41.5% between 2000 and 2005, giving a disproportionate rise of 4.8%. There-
fore, 4.8%/40.8% = 11.8% of the disproportionate rise in short-term volume remains in the
counterfactual. We attribute the 88.2% that disappeared to the changing composition of
buyers between 2000 and 2005.

B.2 Endogenous Holding Periods

The empirical evidence presented in Section 3 indicates that the differential entry of spec-
ulative buyers played a major role in driving the volume boom. However, the results for
short-term volume growth are based on realized rather than expected holding periods. This
way of measuring short-term speculation may complicate the interpretation of our results if
buyers’ intended holding periods endogenously respond to changes in economic conditions
during the boom. The results on non-occupant buyers partially address this concern as they
are based on a measure of speculative entry that does not suffer from the same issue. This
section addresses this issue further using an instrumental variables strategy.

Our approach instruments for realized short-term volume growth using ex-ante demo-
graphic characteristics of an area that are likely to be correlated with intended short holding
periods among potential homebuyers. We use the 2000 Census 5% microdata to calculate the
share of recent homebuyers (within the last 5 years) in each MSA that were either younger
than 35 or aged 65 and older at the time of questioning and include both shares as instru-
ments for 2000–2005 short-term volume growth. This approach follows Edelstein and Qian
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(2014), who use data from the American Housing Survey to study demographic and mort-
gage characteristics as predictors of ex-ante investment horizon. Both older and younger
buyers tend to have shorter horizons than middle-aged buyers, likely due to life cycle forces
that affect the propensity to move, which gives the instrument its relevance.

The strength of this instrument is that it is predetermined relative to the realized holding
periods for sellers in the boom and may therefore help purge our estimates of mechanical
bias arising from endogenous changes in holding periods over the course of ownership spells.
We stress this instrument does not remove the influence of age-specific shocks, so we do not
interpret the IV regressions as demonstrating a causal relation. Rather our goal with this
exercise is to mitigate potential mechanical feedback between total and short-term volume.

Table IA4 presents the results. Column 1 presents first stage regressions of the short-
term volume boom on the old and young shares. The F-statistic of 39.95 indicates the IV
regressions are well powered. Column 2 shows that an OLS regression of the 2000–2005
percent change in total volume on the 2000–2005 change in short-term volume divided by
year-2000 total volume replicates the conclusion from Figure 5, Panel C. Because we are
interested in instrumenting for short-volume growth, the left- and right-hand-side variables
in this regression are swapped relative to their analogs in Figure 5. Thus, the coefficient
estimate of 2.3 reported in Panel A is not directly comparable to the 0.3 number from
Figure 5, Panel C. We rescale the coefficient using a variance decomposition, which indicates
that 33 percent of the variation in total volume growth across MSAs can be explained by
changes in short-term volume, thus matching the short-term volume result from Figure 5.

In Table IA4, column 3, the short-term volume coefficient does not change when we
instrument using year-2000 homebuyer age. If a mechanical relation were driving this cor-
relation, we would expect the IV coefficient to fall relative to the OLS. Columns 4 through
7 show that the relations between the price boom and bust and the short-term volume
boom strengthen in the IV specifications. This result suggests a modest negative feedback
between price growth and holding period, perhaps reflecting a disposition effect force in
which price growth induces buyers to sell earlier than they otherwise would. Overall, the
IV results present strong evidence that the change in realized short-term volume is quan-
titatively important for determining overall volume growth and the size of the price cycle,
even when using only the portion of short-term volume growth predicted by ex-ante buyer
characteristics.

B.3 High Frequency Analysis of Price Growth and Speculative
Volume (pVAR)

To further investigate the link between house price changes and speculative entry, we examine
higher frequency data. Speculative buyers may both cause and respond to house price
changes. Because of the potential for this type of feedback mechanism, we do not attempt
to directly identify the “causal” effect of speculators on house prices.4 Instead, we follow
the approach in Chinco and Mayer (2015), who estimate predictive regressions that are
flexible enough to allow for some types of feedback between speculative entry and prices. In

4Gao et al. (2020) exploit state capital gains tax changes as an instrument for speculation and use this
variation to measure the consequences of housing speculation for the real economy.
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particular, we estimate a series of panel vector auto-regressions (pVARs) that relate house
price growth to the share of purchases made by non-occupant buyers and “short buyers”
(i.e., those who will sell within three years of purchase) at a monthly frequency in each MSA
between January 2000 and December 2006 (the year when prices peaked).

Table IA5 reports results from three different pVAR specifications. In column 1, we es-
timate a simple two-equation model that jointly links both month-over-month house price
growth to the lagged share of transactions by short-buyers (top panel) and the contempora-
neous short-buyer share to lagged house price appreciation (middle panel). Both equations
also include lags of the relevant dependent variable (house price appreciation in the top panel
and the short-buyer share in the middle panel).

The results indicate that a 1 percentage point increase in the fraction of purchases made
by short-term buyers in a given month is associated with a 0.02 percentage point increase
in the house-price appreciation rate in the following month. That is, short-buyer entry is
predictive of subsequent house price growth, though we stress that these predictive regres-
sions do not necessarily imply a causal relation. Interestingly, the results in the middle panel
indicate that short-buyer entry can also be predicted by recent house price growth. A 1
percentage point increase in house price growth in the prior month is associated with a 0.16
percentage point increase in the short-buyer share of entrants.

In column 2, we estimate a similar model swapping out the short-buyer share for the
non-occupant share of purchases. Unlike short-buyer entry, non-occupant entry does not
appear to be predictive for house price growth. The coefficient on the lagged non-occupant
share in the top panel is roughly half the magnitude of its short-buyer analog from column 1
and is not statistically significant. Non-occupants do, however, appear to respond similarly
to past price growth. The estimate in the bottom panel indicates that a 1 percentage point
increase in house price growth in the prior month is associated with a 0.12 percentage point
increase in the non-occupant share of entrants. This estimate is qualitatively similar to and
statistically indistinguishable from the analogous coefficient for short-term buyers.

Finally, in column 3 of the table we estimate a three-equation pVAR that allows for
joint relations between all three variables of interest. The results from this specification are
both qualitatively and quantitatively similar to those from columns 1 and 2. Short-buyer
entry is strongly predictive of subsequent house price growth and predicted by recent past
price growth, whereas non-occupant entry can be predicted by past price growth but is less
informative for predicting subsequent prices.

These results are similar both qualitatively and quantitatively to those in Chinco and
Mayer (2015) (see their Table 7). They find coefficients for lagged out-of-town second-house
buyers versus house price growth of 0.02 percentage points, which matches our short-buyer
share coefficient. They find that local second-house buyers do not predict future house
price growth. Combining their two groups of second-house buyers would deliver an estimate
identical to our non-occupant coefficient. Relative to their specification, we consider a sample
of MSAs that is five times as large and focus on the distinction between short-term buyers
and non-occupants rather than differences within the group of non-occupants.
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C Additional analysis of speculation

In this appendix, we provide details about the calculations using microdata in Section 4.

C.1 Overlap between short-term and non-occupant buyers

The statistics in the text focus on the non-occupant sample of 102 MSAs. Of 2000–2005
short-term volume, 790 thousand out of 2.93 million (27%) were non-occupant buyers (ex-
cluding developers). Short-term-non-occupant-buyer transactions increase over 2000–2005
from 90 thousand to 230 thousand, 41% of the overall growth in short-term transactions
(370 thousand to 710 thousand, excluding developers). Therefore, non-occupants account
for an excess share of the growth in short-term buyers.

In a related approach, we measure the share of 2000–2005 non-occupant purchases that
later become short-term sales. These calculations afford a direct comparison to the 2000–
2005 increase in non-occupant volume that we analyze in Section 3. However, they are not
completely comparable to the ones above, because they look until 2008 to see if a purchase
becomes a short-term sale. Of 2000–2005 non-occupant volume, 930 thousand out of 3.60
million (26%) become short-term sellers (excluding developers). Non-occupant purchases
that become short-term sales increase over 2000–2005 from 110 thousand to 210 thousand,
23% of the overall growth in non-occupant transactions (440 thousand to 880 thousand,
excluding developer buyers). These numbers imply there was not a shift in the composition
of non-occupant buyers during the boom toward short-term behavior. However, it is difficult
to measure short investment horizons of buyers at the end of the boom because many listings
from 2006–2008 did not sell quickly. Another interpretation of these results is that there was
secular growth in long-term non-occupants alongside the entry of short-term speculators
during the boom.

C.2 Credit utilization

To further investigate the role of credit, we decompose the increase in short-term selling
into groups of transactions based on how much leverage the buyer originally used. We focus
on a low-leverage group (purchase loan-to-value (LTV) < 60%), a medium-leverage group
(purchase LTV ∈ [60%, 85%)), and a high-leverage group (purchase LTV > 85%). Of the
short-term sellers in 2000–2005, 31% were low-LTV buyers, 33% were medium-LTV buyers,
and 36% were high-LTV buyers. In contrast, for the long-term sellers for whom we observe
purchase LTVs (i.e., with initial purchase during or after 1995), the distribution skews more
toward high-leverage buyers: 22% were low-LTV buyers, 30% were medium-LTV buyers, and
48% were high-LTV buyers. Between 2000 and 2005, low-LTV, medium-LTV, and high-LTV
short-term-buyer transactions account for 15%, 58%, and 27% of the growth in short-term
transactions, respectively.5 As in our analysis of cash transactions among speculators, these

5Of the short-term sellers in 2000–2005 with non-missing LTV, 1.24 million were low-LTV buyers, 1.33
million were medium-LTV buyers, and 1.46 million were high-LTV buyers. Between 2000 and 2005, the
number of low-LTV, medium-LTV, and high-LTV short-term-buyer transactions increases from 210 to 270
thousand, from 140 to 380 thousand, and from 190 to 300 thousand, respectively.
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statistics reveal that short-term volume is associated with lower use of leverage in the cross-
section relative to the general population.6 At the same time, the proportional growth in
short-term buying is stronger among medium- and high-LTV sellers, making a larger relative
contribution to the overall growth in short-term volume.

C.3 Buyer scale and experience

Scale. We mark transactions as developer purchases when the buyer’s name is not parsed
as a person by CoreLogic and contains strings reflecting developer names. We identify
developer names using CoreLogic’s internal new construction flag, as described in Online
Appendix A. Both this analysis and the analysis of inexperienced investors below exclude
transactions with missing buyer names.

In our sample, these transactions account for 6% of total volume and 9% of the growth
in volume between 2000 and 2005. Of the 3.95 million short-term sales in 2000–2005, the
initial purchases for 580 thousand (15%) were from developer buyers. From 2000 to 2005,
the number of short-term-buyer sales increases from 530 thousand to 930 thousand while the
number of short-term-developer-buyer sales increases from 100 thousand to 130 thousand,
or 8% of the growth in short-term volume. Though developers were active in the housing
market, they did not contribute disproportionately to short-term volume growth in the boom.
A possible reason is that developers were more likely to engage in speculation in the raw
land market (Nathanson and Zwick, 2018).

Experience. To flag non-developers as experienced or inexperienced, we count the total
number of transactions for each unique buyer name in an MSA. We classify buyers with
one or two purchases as inexperienced and those with three or more as experienced. Of the
2000–2005 short-term sales, 2.42 million of 3.36 million (72%) were inexperienced buyers
at the time of purchase (excluding developers). Thus, inexperienced buyers constitute 2.42
million of 3.95 million total short-term sales, or 61%. Between 2000 and 2005, the number
of inexperienced short-term-buyer sales increases from 310 thousand to 560 thousand, or
66% of the growth in short-term sales (excluding developers). The quantitative relevance of
inexperienced buyers for volume is consistent with the evidence in Bayer et al. (2020).

The patterns we document are consistent with speculative motives leading short-term
buyers to enter and exit the market in response to expected capital gains. But some short-
term sellers likely do not exit the market and instead choose to buy another house within the
same MSA. Such a pattern may reflect move-up purchases enabled by higher home equity
in the boom (Stein, 1995; Ortalo-Magné and Rady, 2006), or repeated buying and selling
of homes within the same market by experienced “flippers” (Bayer et al., 2020; Choi et al.,
2014).

To explore this alternative explanation, we follow the methodology of Anenberg and
Bayer (2013) and construct a direct measure of repeated within-MSA purchases. We use the
names of buyers and sellers to match transactions as being possibly linked in a joint buyer-

6In Table IA9 of the online appendix, we extend Table 3 to look at average purchase LTVs for short-term
and non-occupant buyers. Both speculative buyer types have lower average LTVs, which is exclusively driven
by their higher all-cash shares.
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seller event. For each sale transaction, we attempt to identify a purchase transaction in
which the seller from the sale matches the buyer from the purchase. To allow the possibility
that a purchase occurs before a sale or with a lag, we look for matches in a window of plus or
minus one quarter around the quarter of the sale transaction. We only look for within-MSA
matches, as purchases associated with cross-city moves are similar in spirit to our model.

Our match accounts for several anomalies that would lead a naive match strategy to
understate the match rate.7 Our approach is likely to overstate the number of true matches,
because it does not use address information to restrict matches, and it allows common names
to match even if they represent different people. Because we find a low match rate even with
this aggressive strategy, we do not make use of address information in our algorithm or
otherwise attempt to refine matches.

We focus on transactions between 2002 and 2011 because the seller name fields are
incomplete in prior years for several cities. We also restrict sales transactions to those
with human sellers, as indicated by the name being parsed and separated into first and last
name fields by CoreLogic. The sample includes 16.3 million sales transactions. Of these, we
are able to match 3.9 million to a linked buyer transaction, or 24%. Thus, three-quarters of
transactions do not appear to be associated with joint buyer-seller decisions. Among sellers
who had bought within the last three years, the match rate is slightly higher, equal to 31%,
consistent with move-up purchase or flipper behavior. In addition, the match rates peak in
2005 at 29% and 38% for all transactions and short-term transactions, respectively.8 These
patterns confirm and extend the findings in Anenberg and Bayer (2013), who conduct a
similar match for the Los Angeles metro area and show that internal moves account for a
substantial share of the volatility of transaction volume in that city. However, the evidence
supports the notion that sellers engaging in repeat purchases do not account for most of the
short-term volume and its growth, even during the cycle’s peak.

D Relation of model to literature

As mentioned in the Introduction, existing theoretical papers explain the comovement of
prices and volume. However, there are three additional results from our empirical work that
no prior model seems able to explain simultaneously.

First, the increase in volume during the boom, and listings during the boom and quiet,
come disproportionately from short-term sales (Figures 4 and 6). Search-and-matching mod-
els struggle to generate this pattern if the decision to list is independent of homeowner char-
acteristics, as in Wheaton (1990), Piazzesi and Schneider (2009), Dı́az and Jerez (2013),
Guren (2014), Head et al. (2014), and Anenberg and Bayer (2020).9 These models cannot

7These include: inconsistent use of nicknames (e.g., Charles versus Charlie), initials in place of first
names, the presence or absence of middle initials, transitions from a couples buyer to a single buyer via
divorce, transitions from a single buyer to a couples buyer via cohabitation, and reversal of order in couples
purchases.

8The importance of internal volume varies across cities and years during the boom, with the internal move
share of MSA-level short-volume growth ranging from 35% to 46% on average. On average across MSAs,
growth in internal short-volume accounts for 35% of the growth in total short volume in 2005, the peak year
in total volume.

9Two exceptions are Hedlund (2016) and Ngai and Sheedy (2020), who respectively focus on credit
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explain the result that homeowners who bought later in the boom were more likely to resell
than homeowners who bought earlier. Overconfidence models, such as Daniel et al. (1998,
2001), generate speculative trading that accompanies booms and busts in asset prices. In
these models, an initial increase in asset prices boosts the confidence of optimistic investors,
leading them to push prices up further. However, these models are not designed to fit the rise
in short-term volume that occurs during booms, because the same overconfident investors
buy the asset in the early as well as the late stages of a boom. Other disagreement and
extrapolation–psychology papers can generate a disproportionate short-term volume boom,
as long as rising prices generate more disagreement or stronger psychological urges to both
buy and sell.

Second, non-occupants constitute a disproportionate share of the increase in buying ac-
tivity during the boom (Figure 4). Non-occupant purchasing is absent from many search-
and-matching models, either because the owner-occupied and rental markets are separate
(Guren, 2014), or because all non-occupant owners are previous occupants of the same house
(Head et al., 2014; Burnside et al., 2016). The extrapolation–psychology papers also provide
no role for non-occupants, as they model more general asset markets where all owners receive
the same flow benefits from the asset. Nathanson and Zwick (2018) present a disagreement
model in which non-occupants disproportionately buy housing during a boom, but their
model is static and is therefore not suited to explain the dynamics at the heart of this paper.

The third result is the existence of the quiet, during which prices and volume diverge
while listings accumulate (Figures 1 and 3). Disagreement papers and credit-constraint
housing models predict a monotonic relation between prices and volume, and therefore do
not explain a period when these outcomes move in opposite directions.10 Barberis et al.
(2018) and Liao and Peng (2018) generate a divergence of prices and volume, but listings
fall with volume because of Walrasian market clearing. A similar pattern of prices, volume,
and listings appears in Burnside et al. (2016). In contrast, Guren (2014) matches all three
variables. However, in that model, listings sharply decline during the boom (more than
one-for-one with respect to prices), and they never rise above their pre-shock level in the
impulse response. Empirically, listings modestly rise during the boom in the aggregate. The
sharp rise in listings during the quiet, far above their 2000 level, is perhaps the most salient
aspect of Figure 3.

constraints and within-market moves. As we explain in Online Appendices C.2 and C.3, short-term volume
increases significantly among low-LTV sellers, and most short-term sellers do not relocate within the same
MSA. Therefore, these two papers do not explain a substantial share of the disproportionate rise in short-term
volume during the boom.

10An exogenous increase in overconfidence raises volume in Daniel et al. (2001) and Scheinkman and Xiong
(2003); it raises conditional return volatility in Daniel et al. (2001) while raising the price level in Scheinkman
and Xiong (2003). Disagreement accounts for some of the average prices and volume in the housing market
(Bailey et al., 2016) and can generate dispersion in beliefs about house price growth over the period we are
studying (Piazzesi and Schneider, 2009; Burnside et al., 2016). By definition, disagreement is less suited to
explain the high average level of these beliefs (Case et al., 2012; Foote et al., 2012; Cheng et al., 2014).

11



E Proofs

E.1 Lemma 1

Agents at t believe that they observe dt−k = d̃t−k for all k > 0. Let g∗t denote the mean of
the posterior on gt−1 from this information, and σ2

l its variance. We solve for these outcomes
using standard Kalman filtering. Denote σ2

εd
= (1− γ)σ2

d and σ2
εg = γ(1− ρ2)σ2

d.
We have gt−1 = g∗t + ζgt , where ζgt ∼ N (0, σ2

l ). Therefore, gt = (1 − ρ)µg + ρgt−1 + εgt =
(1−ρ)µg +ρg∗t +ρζgt + εgt . The prior on gt at t+1 is thus N ((1−ρ)µg +ρg∗t , ρ

2σ2
l +σ2

εg). The
information is ∆d̃t, which according to agents equals gt + εdt . Therefore, the new posterior
variance satisfies σ2

l = σ2
εd

(ρ2σ2
l + σ2

εg)(σ
2
εd

+ ρ2σ2
l + σ2

εg)
−1. Solving yields

σ2
l = (2ρ2)−1

(
−(1− ρ2)σ2

εd − σ
2
εg +

√
((1− ρ2)σ2

εd
+ σ2

εg)
2 + 4ρ2σ2

εd
σ2
εg

)
.

The new posterior mean satisfies g∗t+1 = (1−α)∆d̃t+α((1−ρ)µg+ρg∗t ), where α = σ2
εd
/(σ2

εd
+

ρ2σ2
l + σ2

εg). Iterating (and then subtracting one from the time subscripts everywhere) gives

g∗t = µg + (1− α)
∞∑
k=1

(αρ)k−1
(

∆d̃t−k − µg
)
.

Because ĝt = (1− ρ)µg + ρg∗t , we have proved the formula in the lemma for ĝt. We showed
above that σ̂2

g = ρ2σ2
l + σ2

εg . We have dt = dt−1 + gt + εdt = (dt−1 − d̃t−1) + d̃t−1 + (1 −
ρ)µg + ρgt−1 + εgt + εdt = (dt−1 − d̃t−1) + d̃t−1 + ĝt + ρζgt + εgt + εdt , which immediately gives

d̂t = d̃t−1 + ĝt, with σ̂2
d = ρ2σ2

l + σ2
εg + σ2

εd
.

The bound we assume for r (see Section 5.1) is

r > e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 − 1. (E1)

E.2 Lemma 2

By Lemma 1, ∆d̃t = ĝt+(d̃t−d̂t). Furthermore, ĝt+1 = µg+(αρ)(ĝt−µg)+(1−α)ρ(∆d̃t−µg) =

(1 − ρ)µg + ρĝt + (1 − α)ρ(d̃t − d̂t). Finally, d̂t+1 = d̃t + ĝt+1 = d̂t + (1 − ρ)µg + ρĝt + (1 +

(1− α)ρ)(d̃t − d̂t). From the point of view of agents, d̃t = dt. Therefore,

d̂t+1 = d̂t + (1− ρ)µg + ρĝt + (1 + (1− α)ρ)ζt (E2)

ĝt+1 = (1− ρ)µg + ρĝt + (1− α)ρζt, (E3)

where ζt ≡ dt − d̂t.
Write V m(d̂t, ĝt) = ed̂tvm(d̂t, ĝt) and P = ed̂tp. Then π̃(P, dt) = 1− F (log p+ log κ− ζt),

which we denote π̃(p, ζt) by abuse of notation. Substituting these expressions into (6) and

12



using (E2) yield

vm(d̂t, ĝt) = sup
p
E

(
π̃(p, ζt)p+

(1− π̃(p, ζt))e
(1−ρ)µg+ρĝt+(1+ρ−αρ)ζtvm(d̂t+1, ĝt+1)

1 + rm

)
, (E4)

with the expectation over ζt ∼ N (0, σ̂2
d) and ĝt+1 given by (E3). Because d̂t and d̂t+1 appear

only in the first argument of vm, this function does not depend on d̂t, so

V m(d̂t, ĝt) = ed̂tvm(ĝt). (E5)

It follows that the argmax of (E4) does not depend on d̂t. We denote it p(ĝt).

E.3 Lemma 3

When rm → ∞, p(·) becomes constant, as is clear from (E4). In this case, the formula for
d̂t+1 at the beginning of the proof of Lemma 2 implies that ∆ logPt+1 = (1 − ρ)µg + ρĝt +

(1 + (1−α)ρ)(d̃t− d̂t). Solving for d̃t− d̂t and substituting it into the formula for ĝt+1 there
yields ĝt+1 = (1 + (1− α)ρ)−1((1− ρ)µg + ρĝt + (1− α)ρ∆ logPt+1). Iterating this formula
backwards (and then subtracting 1 from the time subscripts) gives

ĝt = µg + (1− α)
∞∑
k=1

(
ρ

1 + (1− α)ρ

)k
(∆ logPt−k − µg) .

Conditional on market data before t, agents at t believe that E(d̃t − d̂t) = 0. Therefore,
E∆ logPt+1 = (1 − ρ)µg + ρĝt. Substituting in the expression just derived for ĝt gives the
first equation in the lemma.

To derive the second equation, we let p denote the constant value of p(·) that holds in the
limit as rm →∞. From (5), d̃t = d̂t + log(κ p)−F−1(1− πt). Therefore, the equation above
for ∆ logPt+1 implies that ∆ logPt+1 = E∆ logPt+1+(1+(1−α)ρ) (log(κ p)− F−1(1− πt)),
as claimed.

E.4 Lemma 4

A potential buyer at t observes the history of price changes, Pt′/Pt′−1, but not past price
levels. Therefore, her information set is different than the one in the statement of Lemma 1.
Nonetheless, she still computes ĝt using the formula in Lemma 1, as that formula depends
only on past price changes and not past price levels. However, the formula for d̂t does not
work because it requires knowledge of Pt−1. Therefore, she imputes d̂t using her knowledge

of equilibrium and the list price she observes. In particular, given Lemma 2, P = ed̂tp(ĝt),
which implies that d̂t = log(P/p(ĝt)). The potential buyer’s decision rule is therefore

V b

(
log

(
P

p(ĝt)

)
, ĝt;λ, δ, n

)
≥ P. (E6)
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The proof proceeds by showing that this inequality is equivalent to the one in Lemma 4
through suitable choice of κn,j(ĝt).

Write V s(d̂t, ĝt;λ, δ) = (r + λ)−1eδ + ed̂tvs(d̂t, ĝt;λ, δ). Substituting this equation, (E2),
and (E5) into (8) yields

vs(d̂t, ĝt;λ, δ) = (1 + r)−1E
(
e(1−ρ)µg+ρĝt+(1+ρ−αρ)ζt(λvm(ĝt+1) + (1− λ)vs(d̂t+1, ĝt+1;λ, δ))

)
,

(E7)
with the expectation over ζt ∼ N (0, σ̂2

d) and ĝt+1 given by (E3). Because d̂t, d̂t+1, and δ

appear only in the arguments of vs, that function does not depend on d̂t and δ, allowing us
to write V s(d̂t, ĝt;λ, δ) = (r + λ)−1eδ + ed̂tvs(ĝt;λ). Substituting this equation, (E2), and
(E5) into (7) yields

V b(d̂t, ĝt;λ, δ, n) =
eδ

r + λ
+

ed̂t

1 + r
E
(
e(1−ρ)µg+ρĝt+(1+ρ−αρ)ζt (λvm(ĝt+1) + (1− λ)vs(ĝt+1;λ))

)
,

with the expectation over ζt ∼ N
(
σ̂2
d(δ−d̂t−µn)
σ2
a+σ̂

2
d

,
σ2
aσ̂

2
d

σ2
a+σ̂

2
d

)
and ĝt+1 given by (E3). Let Ψ(ζt, ĝt;λ)

denote the argument inside the expectation. We can simplify the buying decision, (E6), to

eδ

P
≥ (r + λ)

(
1− EΨ(ζt, ĝt;λ)

(1 + r)p(ĝt)

)
, (E8)

with the expectation over ζt ∼ N
(
σ̂2
d(log(e

δ/P )+log p(ĝt)−µn)
σ2
a+σ̂

2
d

,
σ2
aσ̂

2
d

σ2
a+σ̂

2
d

)
.

To proceed, we use the following lemma about vm(ĝt) and vs(ĝt;λ):

Lemma IA1. For all λ > 0, vm(ĝt) and vs(ĝt, λ) are continuous and weakly increasing
functions of ĝt.

Proof. Appendix E.5.

From IA1, it follows immediately that Ψ(ζt, ĝt;λ) is a continuous and weakly increasing
function of ζt for any gt and λ > 0, which implies that the right side of (E8) continuously and
weakly decreases in eδ/P . The left side continuous and strictly increases in eδ/P . Therefore,
for n, j, and ĝt such that the right side does not limit to a positive number as δ → ∞ for
λ = λj, then (E8) holds for all δ, meaning that Lemma 4 holds with κn,j(ĝt) = 0. If the
right side limits to a positive number as δ → −∞ when λ = λj, then by the Intermediate
Value Theorem, there exists a unique κn,j(ĝt) such that the inequality holds if and only if
eδ/P ≥ κn,j(ĝt), which proves Lemma 4.

E.5 Value Function Monotonicity

This section establishes that the functions vm(·) and vs(·;λ), which we define in the proofs
of Lemmas 2 and 4, weakly and continuously increase. We follow Stokey et al. (1989). To
apply their results, we need to work with a one-point (Alexandroff) compactification of a
subset of the real numbers. For a topological set X, the Alexandroff compactification is the
set X∗ = X ∪ {∞}, whose open sets are those of X together with sets whose complements
are closed, compact subsets of X; X∗ is compact (Kelley, 1955).
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Lemma IA2. Let f : (0,∞) × R → R be continuous. Suppose there exists functions g0 :
R → R and g∞ : R → R such that limx→0 f(x, y) = g0(y) and limx→∞ g∞(y) uniformly.
Define f̃ : [0,∞)∗ × R → R by f̃(x, y) = f(x, y) for x ∈ (0,∞) and f̃(x, y) = gx(y) for
x ∈ {0,∞}. Then f̃ is continuous.

Proof. Let Z ⊂ R be open. We show that f̃−1(Z) is open by demonstrating that for each
(x, y) ⊂ f̃−1(Z), there exists an open set U such that (x, y) ∈ U ⊂ f̃−1(Z). If x ∈ (0,∞),
then set U = f−1(Z), which is open by the continuity of f . Consider the case x = 0.
Because Z is open, there exists ε > 0 such that all z with |z − g0(y)| < ε are in Z. By
uniform convergence, there exists δ > 0 such that |f(x′, y′)− g0(y)| < ε for all x ∈ [0, δ) and
y ∈ R. Therefore, U = [0, δ) × R suffices. Consider the case x = ∞. There likewise exists
ε > 0 such that all z with |z − g∞(y)| < ε are in Z. By uniform convergence, there exists
N > 0 such that |f(x′, y′)− g∞(y)| < ε for all x > N and y ∈ R. Therefore, U = (N,∞)×R
suffices.

We next establish the existence of a continuous solution vm(·) to (E4). Let C be the
space of bounded continuous functions from R to itself. Let a > 0 be a constant. For v ∈ C,
we define the operator T by (Tv)(ĝ) = supp f(p, ĝ), where

f(p, ĝ) =

∫ ∞
−∞

(
π̃(p, ζ)p

a+ e
ρĝ
1−ρ

+
(1− π̃(p, ζ))e(1−ρ)µg+ρĝ+(1+ρ−αρ)ζ

1 + rm
×(

a+ eρµg+
ρ2ĝ
1−ρ+

ρ2(1−α)ζ
1−ρ

)
v((1− ρ)µg + ρĝ + ρ(1− α)ζ)

a+ e
ρĝ
1−ρ

φ(ζ)dζ,

where φ(·) is the probability density function of N (0, σ̂2
d). If v is a fixed point of T , then

vm(ĝ) = (a+ e
ρĝ
1−ρ )v(ĝ) solves (E4). We find a fixed point by demonstrating that T : C → C

and then showing that for a sufficiently small value of a, T satisfies the Blackwell conditions
and is hence a contraction mapping.

We first show that Tv ∈ C. We have the bound

||Tv|| ≤ sup
p

∫ ∞
−∞

a−1π̃(p, ζ)pφ(ζ)dζ+

(1 + rm)−1e(1−ρ)µg ||v|| sup
x

aeρx+
(1+ρ−αρ)2σ̂2d

2 + e
ρµg+

ρx
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρx
1−ρ

,

so Tv is bounded.
Demonstrating continuity is much more complicated. We first apply Lemma 12.14 of

Stokey et al. (1989) to establish the continuity of f(·, ·).
In their terminology, X = (0,∞), Z = R2, their y corresponds to our p, their z corre-

sponds to our (ĝ, ζ), and the transition function Q puts mass φ(ζ ′) on (ĝ, ζ ′) and mass 0
on other elements of Z. To apply their lemma, we must show that Q has the Feller prop-
erty, which means (see their page 375) that

∫
h(z′)Q(z, z′)dz′ is continuous in z as long
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as h is continuous and bounded.11 Given our specification of Q, this integral reduces to∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′, which is trivially continuous in ζ. To demonstrate continuity in ĝ, we

closely follow the proof of their Lemma 9.5. Choose a sequence ĝn converging to ĝ. Then
|
∫∞
−∞ h(ĝn, ζ

′)φ(ζ ′)dζ ′ −
∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′| ≤

∫∞
−∞ |h(ĝn, ζ

′)− h(ĝ, ζ ′)|φ(ζ ′)dζ ′. Each func-
tion ζ ′ 7→ |h(ĝn, ζ

′)− h(ĝ, ζ ′)| converges pointwise to the zero function (by the continuity of
h), so by the Lebesgue Dominated Convergence Theorem (their Theorem 7.10), this integral
limits to zero. Therefore, ĝ 7→

∫∞
−∞ h(ĝ, ζ ′)φ(ζ ′)dζ ′ is continuous in ĝ, and Q has the Feller

property. As a result, f(·, ·) is continuous on (0,∞)× R.
The next step is to invoke our Lemma IA2. To do so, we must show uniform converge

of f(p, ĝ) for p → 0 and p → ∞. In the first limit, f(p, ĝ) → 0, and this convergence is
uniform because terms with ĝ multiplying the terms with p are uniformly bounded in ĝ. In
the second limit, the convergence is to the integral in which π̃ = 0, and the convergence is
uniform for the same reason. Hence, Lemma IA2 applies, and the induced f̃ is continuous.

The final step is to show that (Tv)(ĝ) is continuous. This statement follows immediately
from Berge’s Maximum Theorem on general topological spaces (see, for instance, page 570
of Aliprantis and Border (2006)) because supp∈(0,∞) f(p, ĝ) = supp∈[0,∞)∗ f̃(p, ĝ) and because
[0,∞)∗ is compact. Therefore, Tv ∈ C.

We next verify the Blackwell conditions for T (Theorem 3.3 in Stokey et al. (1989)).
Monotonicity is trivial. Given the bound above, discounting holds as long as

(1 + rm)−1e(1−ρ)µg sup
x

aeρx+
(1+ρ−αρ)2σ̂2d

2 + e
ρµg+

ρx
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρx
1−ρ

< 1.

We are free to choose any positive value of a. By considering the limit as a → 0, we find
that we can choose such an a to satisfy this inequality as long as

(1 + rm)−1e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 < 1.

This inequality holds because rm ≥ r and we assume that (E1) holds. Therefore, by Theorem
3.3 of Stokey et al. (1989), T is a contraction mapping. By the Contraction Mapping Theorem
(their Theorems 3.1 and 3.2), T has a unique fixed point in C, as desired. Call this function

v∗. As mentioned above, vm(ĝ) = v∗(ĝ)(a + e
ρĝ
1−ρ ) then solves (E4); this function clearly

inherits the continuity of v∗.
Finally, we show that vm is weakly increasing. Let C ′ ⊂ C be the set of v such that

v(ĝ)(a+e
ρĝ
1−ρ ) weakly increases. We claim that C ′ is closed. Let {vn} be in C ′ converging in C

to v. For any ĝ0 < ĝ1, vn(ĝ1)(a+e
ρĝ1
1−ρ )−vn(ĝ0)(a+e

ρĝ0
1−ρ ) ≥ 0. Because vn converges pointwise

to v, we must have v(ĝ1)(a + e
ρĝ1
1−ρ )− v(ĝ0)(a + e

ρĝ0
1−ρ ) ≥ 0 as well. Therefore, Corollary 1 to

Theorem 3.2 of Stokey et al. (1989) shows that vm ∈ C ′ as long as T : C ′ → C ′, which is
immediate from (E4).

The task remaining for this appendix is to show that each vs(·;λ) weakly and continuously

11Their lemma also requires that the term inside the integral defining f(·, ·), other than φ(ζ)dζ, is bounded
in p, ĝ, and ζ. This boundedness holds because v is bounded, because limp→∞ p̃(ζ, p)p = 0, and because
limζ→∞(1− π̃(p, ζ))ecζ = 0 for any c > 0.
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increases. The argument proceeds as with vm(·), but we use (E7), and we can skip the steps
involving a supremum. Define the map T on C by

(Tv)(ĝ) =(1 + r)−1
∫ ∞
−∞

(
ae(1−ρ)µg+ρĝ+(1+ρ−αρ)ζ

a+ e
ρĝ
1−ρ

+

eµg+
ρĝ
1−ρ+

(1−αρ)ζ
1−ρ

a+ e
ρĝ
1−ρ

)
((1− λ)v(g′) + λv∗(g′))φ(ζ)dζ,

where g′ = (1 − ρ)µg + ρĝ + ρ(1 − α)ζ, and a > 0 is a constant to be specified later. If v

is a fixed point of T , then vs(ĝ;λ) = (a + e
ρĝ
1−ρ )v(ĝ) solves (E7). Clearly, Tv is bounded.

To prove continuity, we again apply Lemma 12.14 of Stokey et al. (1989), this time with
X = Z = R, our ĝ corresponding to their y, and our ζ corresponding to their z. In order
to apply their lemma, we have to absorb the ζ terms into the Q transition function so that
their f is bounded. Using the identity e−z

2/(2σ2)+bz = eσ
2b2/2e−(z−σ

2b)2/(2σ2), we have

e(1+ρ−αρ)ζφ(ζ) = eσ̂
2
d(1+ρ−αρ)

2/2φ(ζ − σ̂2
d(1 + ρ− αρ))

and

e
(1−αρ)ζ

1−ρ φ(ζ) = e
σ̂2d(1−αρ)

2

2(1−ρ)2 φ

(
ζ − σ̂2

d(1− αρ)

1− ρ

)
.

These functions serve as constants times a valid transition function (we showed above that
the normal distribution with 0 mean and variance σ̂2

d has the Feller property), and the
remainder of the integrand is bounded in both ĝ and ζ. Thus, Lemma 12.14 applies and Tv
is continuous. As a result, T : C → C.

Next we verify the aforementioned Blackwell conditions for T . Monotonicity again is
trivial. Discounting holds if

1− λ
1 + r

sup
ĝ

ae(1−ρ)µg+ρĝ+
(1+ρ−αρ)2σ̂2d

2 + e
µg+

ρĝ
1−ρ+

(1−αρ)2σ̂2d
2(1−ρ)2

a+ e
ρĝ
1−ρ

< 1.

Because we are free to pick any a > 0, the inequality holds for some such a if

(1− λ)e
µg+

(1−αρ)2σ̂2d
2(1−ρ)2 < 1 + r,

which always holds because λ ∈ [0, 1] and we assume that (E1) holds. Therefore, T satisfies
the Blackwell conditions and is a contraction mapping. As a result, it has a unique fixed

point in C. Call it v∗∗. Then vs(ĝ;λ) = (a+ e
ρĝ
1−ρ )v∗∗(ĝ) solves (E7).

Finally, we show that vs(·;λ) weakly and continuously increases. Continuity follows from
the continuity of v∗∗. As argued above, weak monotonicity holds as long as T : C ′ → C ′,
where this set is defined as above. That T maps C ′ into itself is immediate from (E7) and
the fact that vm weakly increases. QED
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F Details on Counterfactuals

F.1 Walrasian extension

In the Walrasian version of our model, a mechanism selects a price each period so that the
number of potential buyers willing to buy at that price equals the number of movers willing to
sell. The main model assumes that each mover matches to a potential buyer with probability
one, which implicitly assumes that the potential buyer population moves in proportion to the
mover population. To maintain comparability with the main model, we make an analogous
assumption in the Walrasian variant that the number of potential buyers at time t is NIt,
where N > 1 is a constant.

Here, we describe equilibrium in which all movers sell. In this case, (3) implies:

It = NIt (1− F (log κ+ logPt − dt)) .

Solving for Pt yields what agents believe is the equilibrium pricing function:

P̃ (dt) = κ−1eF
−1(1−N−1)edt = p̃edt .

In equilibrium, movers must weakly prefer selling at this price versus waiting to sell next
period. Therefore, we must have edt ≥ (1 + rm)−1Ete

dt+1 , where Et denotes the mover
expectation that we now specify. By observing the current and past prices, movers believe
that they observe the history of demand as d̃t−j = log(p̃−1Pt−j) for j ≥ 0. By a Kalman
filtering argument similar to the proof of Lemma 1, the mover posterior on gt at t has mean

ĝmt = µg + (1− α)
∞∑
j=0

(αρ)j
(

∆d̃t−j − µg
)

= µg + (1− α)
∞∑
j=0

(αρ)j (∆ logPt−j − µg)

and variance σ2
l . We have dt+1 = dt + gt+1 + εdt+1 = dt + (1 − ρ)µg + ρgt + εgt+1 + εdt+1 =

dt + (1− ρ)µg + ρĝmt + ρζgt + εgt+1 + εdt+1. Therefore,

Ete
dt+1 = edte(1−ρ)µg+ρĝ

m
t e(ρ

2σ2
l +σ

2)/2.

Mover optimality therefore requires that

ĝmt ≤ ρ−1
(
log(1 + rm)− (1− ρ)µg − (ρ2σ2

l + σ2)/2
)
.

This inequality cannot hold at all times because ĝmt is unbounded. Therefore, when the
expected growth rate is sufficiently high, some movers will refrain from selling their homes
at the Walrasian equilibrium price. However, we check that the inequality holds for all ĝmt
in the discrete mesh and also for all realized values in the simulations. For our parameters,
the right side equals 0.15, which is much larger than the maximal realized value of 0.03.
Therefore, in our simulations, we assume the approximation that the equilibrium always
features full sale by all movers at all times.

We now solve for the optimal potential buyer decision, which determines the true pricing
function. For j ≥ 1, potential buyers set ∆d̃t−j = ∆ logPt−j. They face the same filtering
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problem on gt as potential buyers in the main model, so their posterior mean ĝt follows
the formula in Lemma 1. Because they sell immediately in the approximate equilibrium we
consider, the mover value is just the price, V m = p̃ed̃t . (In fact, even in the exact equilibrium,
the mover value coincides with the price because movers are indifferent between selling and
not.) The remainder of the derivation follows the proof of Lemma 4 closely, so we omit it.
That is, there exist functions κj(ĝt) such that a potential buyer purchases a house if and
only if eδ ≥ κj(ĝt)Pt. The functions no longer depend on n because the private flow utility
δ is uninformative about dt, as potential buyers believe that they observe dt perfectly via
d̃t = log(p̃−1Pt). The actual equilibrium price must satisfy

It = NIt

(
1−

J∑
j=1

(β0,j + β1,j)F (log κj(ĝt) + logPt − dt)

)
,

for which it is clear that a unique solution always exists of the form Pt = p(ĝt)e
dt . We

discretize the ĝt space and solve for the pricing function p(·) and the κj(·) functions at these
values, interpolating/extrapolating in between and beyond the mesh.

To maintain comparability with the main model, we decrease γ to 0.042 so that the price
overshoot is the same in the Walrasian model as in the main model, and we update κ so
that the demand error is still zero on average. Under the baseline parameters, the price
paths in the Walrasian model seem to be explosive. We believe that prices explode because
they adjust more quickly with Walrasian market clearing. Choosing a lower γ leads to more
stable price paths as in the baseline model. Other parameters remain the same.

F.2 Comparing Short-term and Non-Occupant Buyers

To study the role of short-term buyers, we re-run the simulations setting βn,j = 0 for all
values of j except that for which λj = 0.03. Unlike the counterfactual in Section 6.5.3, we
keep a positive mass of non-occupant potential buyers, and we do so in two ways. In the
first, the share of non-occupants among potential buyers with λ = 0.03 equals its baseline. In
the second, we change this ratio to the non-occupant share in the whole baseline population.
The second version controls for the non-occupant share as we alter the λ distribution.

We perform a similar pair of counterfactual exercises to measure the effect of removing
non-occupant buyers. The first counterfactual sets the non-occupant shares, β0,j, to zero,
and then scales up the occupant shares, β1,j, so that they sum to one. This method skews
the λ distribution toward long-term potential buyers because occupants have longer horizons
than non-occupants. Therefore, we explore a second counterfactual in which we maintain
the original λ distribution while eliminating non-occupants. We continue to set each β0,j to
zero, but now we update β1,j to the baseline share of all potential buyers for whom λ = λj.

Table IA10 reports key outcomes from the impulse responses under the baseline and each
of these four counterfactuals. In the counterfactuals with only long-term buyers, the price
boom falls to 8.7% from its baseline of 14.5%, meaning that short-term buyers amplify the
price boom by 67%. Furthermore, in the counterfactuals, the price bust nearly disappears,
the volume boom is half its baseline size, and sale probabilities rise less. Inventories fall more
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during the boom and attain a smaller level at the end of the quiet.12 Therefore, eliminating
short-term buyers prevents the model from matching key aggregate facts (Figures 1 and 3).13

We obtain similar results in the first counterfactual with only occupants: the price bust,
volume boom, rise in sale probabilities, and end-of-quiet listings become significantly smaller.
However, when we adjust the λ distribution in the last counterfactual, eliminating non-
occupants fails to attenuate the cycle. In fact, the cycle outcomes grow in this scenario.
Evidently, non-occupants amplify the housing cycle, but only because many of them have
short horizons. Long-term non-occupants fail to amplify the cycle and may even dampen it.

One concern is that the occupant premium, µ1, is about 7 times smaller than the standard
deviation of flow utility, σa. Therefore, non-occupants may play a small role in amplifying the
cycle solely because of parameter values in which non-occupants closely resemble occupants.
To investigate this possibility, Table IA11 regenerates the first, third, and fifth columns of
Table IA10 under the larger values of µ1 = 0.033 and µ1 = 0.066, corresponding to 50%
and 100% of the baseline value of σa. We continue to find significant attenuation of the
cycle with all long-term buyers if we adjust for the occupant distribution, but not with all
occupant buyers if we adjust for the λ distribution.

These results speak to the finding in Table 2 that a short-volume boom more robustly
predicts price booms and busts than does a non-occupant boom. Our findings are consistent
with Gao et al. (2020), who find that non-occupants amplify the housing bust, as that paper
does not look separately at long-term versus short-term non-occupants. Chinco and Mayer
(2015) find a stronger effect of out-of-town than local non-occupant buyers on subsequent
price growth. This finding is consistent with our results if out-of-town buyers have shorter
horizons than local ones. Finally, our results echo Nathanson and Zwick (2018), who the-
oretically predict larger house price booms in cities with a greater share of non-occupant
buyers when those buyers disagree about future prices and the housing stock is fixed. Static
disagreement in that model functions similarly to how, in this model, variation in horizons
interacts with extrapolative expectations to generate heterogeneous expected returns.

12These counterfactuals do a better job matching inventory levels during the bust, which reach 1.6% above
the initial level, a higher peak than the baseline. In the baseline, new listings fall sharply during the bust
because short-term buyers exit the market (Panel F of Figure 11). Thus, the baseline does a better job
matching listing behavior in the boom and quiet than in the bust.

13The occupant adjustment does not affect the cycle because agents in the model correctly understand the
distribution of housing utility, meaning that changing the housing utility distribution does not destabilize
prices.
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FIGURE IA1
The Dynamics of Prices and Volume (Non-Sand-State Cities)

Panel A. Boston, MA Panel B. Cleveland, OH
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Panel C. Portland, OR Panel D. Seattle, WA
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Notes: This figure displays the dynamic relation between prices (solid blue) and volume (dotted orange) in
the U.S. housing market between 2000 and 2011. In Figure 1, we focus on cities that represent the largest
boom–bust cycles. Here, we focus on the largest cities outside of the sand states for which we have both
volume and listings data. Variables are defined as in Figure 1. Shaded regions denote the quiet, defined as
the period between the peak of volume and the last peak of prices before their pronounced decline.
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FIGURE IA2
The Lead–Lag Relationship between Prices and Volume (No Sand States)
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Notes: This figure shows that the correlation between prices and lagged volume is robust across MSAs. The
figure is constructed as in Figure 2 but excludes MSAs in Arizona, California, Florida, and Nevada.
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FIGURE IA3
The Dynamics of Prices and Inventories (Non-Sand-State Cities)

Panel A. Boston, MA Panel B. Cleveland, OH
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Panel C. Portland, OR Panel D. Seattle, WA
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Notes: This figure displays the dynamic relation between prices (solid blue) and inventory (dotted orange)
in the U.S. housing market between 2000 and 2011. In Figure 3, we focus on cities that represent the largest
boom–bust cycles. Here, we focus on the largest cities outside of the sand states for which we have both
volume and listings data. Variables are defined as in Figure 3. Shaded regions denote the quiet, defined as
the period between the peak of volume and the last peak of prices before their pronounced decline.
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FIGURE IA4
Additional Impulse Responses in Counterfactuals

Panel A. Pr(Sale | Listing),
Rational

Panel B. New Listings by Holding Period,
Rational
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Panel F. New Listings by Holding Period,
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Notes: Impulse responses are average differences between log outcomes in control simulations and treatment
simulations, in which a 2-standard-deviation shock to εgt (the demand growth innovation) occurs in quarters
0 through 3. A short holding period is defined as less than or equal to 12 quarters.
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FIGURE IA5
Adjusted Buying Cutoffs for Different Expected Growth Rates

Panel A. Tax on all buyers Panel B. Tax on non-occupant buyers
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Notes: The adjusted buying cutoff for occupancy type n and horizon type λj is κκτn,j(ĝ)/κτ , where τ = (τ0, τ1) is the vector of tax rates. In Panel A,
we explore a 5% on all buyers, so that τ = (0.05, 0.05). In Panel B, we explore a tax that binds only on non-occupants, so that τ = (0.05, 0). Solid
lines correspond to occupants (n = 1); dashed lines correspond to non-occupants (n = 0). The horizontal grey dashed line gives κ.
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TABLE IA1
List of Metropolitan Statistical Areas Included in the Analysis Sample

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis

Included in
Listings
Analysis

Akron, OH 1.00 x x New York-Newark-Jersey City, NY-NJ-PA 0.97 x
Ann Arbor, MI 1.00 x x North Port-Sarasota-Bradenton, FL 1.00 x
Atlanta-Sandy Springs-Roswell, GA 0.80 Norwich-New London, CT 1.00 x
Atlantic City-Hammonton, NJ 1.00 x x Ocala, FL 1.00 x x
Bakersfield, CA 1.00 x x Ocean City, NJ 1.00 x x
Baltimore-Columbia-Towson, MD 1.00 x Olympia-Tumwater, WA 1.00 x x
Barnstable Town, MA 1.00 x Orlando-Kissimmee-Sanford, FL 1.00 x
Bellingham, WA 1.00 x x Oxnard-Thousand Oaks-Ventura, CA 1.00 x x
Bend-Redmond, OR 1.00 x Palm Bay-Melbourne-Titusville, FL 1.00 x
Boston-Cambridge-Newton, MA-NH 0.89 x Pensacola-Ferry Pass-Brent, FL 1.00 x
Boulder, CO 1.00 x x Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.00 x
Bremerton-Silverdale, WA 1.00 x x Phoenix-Mesa-Scottsdale, AZ 1.00 x x
Bridgeport-Stamford-Norwalk, CT 1.00 x Pittsfield, MA 1.00
Buffalo-Cheektowaga-Niagara Falls, NY 0.80 x x Portland-Vancouver-Hillsboro, OR-WA 0.97 x x
California-Lexington Park, MD 1.00 x Port St. Lucie, FL 1.00 x x
Canton-Massillon, OH 0.92 x x Prescott, AZ 1.00 x x
Cape Coral-Fort Myers, FL 1.00 x x Providence-Warwick, RI-MA 0.78 x
Champaign-Urbana, IL 0.82 x Punta Gorda, FL 1.00 x
Charleston-North Charleston, SC 0.79 x Raleigh, NC 0.78 x
Chicago-Naperville-Elgin, IL-IN-WI 0.90 Reading, PA 1.00 x
Chico, CA 1.00 x Redding, CA 1.00 x
Cincinnati, OH-KY-IN 0.78 x x Reno, NV 0.99 x x
Cleveland-Elyria, OH 1.00 x x Riverside-San Bernardino-Ontario, CA 1.00 x x
Colorado Springs, CO 0.95 x Rockford, IL 0.84 x
Crestview-Fort Walton Beach-Destin, FL 1.00 x Sacramento–Roseville–Arden-Arcade, CA 1.00 x x
Dallas-Fort Worth-Arlington, TX 0.85 x Salem, OR 0.79 x
Dayton, OH 0.86 x x Salinas, CA 1.00 x
Deltona-Daytona Beach-Ormond Beach, FL 1.00 x x San Diego-Carlsbad, CA 1.00 x x
Denver-Aurora-Lakewood, CO 0.95 x San Francisco-Oakland-Hayward, CA 1.00 x x
El Centro, CA 1.00 x San Jose-Sunnyvale-Santa Clara, CA 1.00 x
El Paso, TX 0.99 x x Santa Cruz-Watsonville, CA 1.00 x
Elmira, NY 1.00 x San Luis Obispo-Paso Robles-Arroyo Grande, CA 1.00 x x
Erie, PA 1.00 x Santa Maria-Santa Barbara, CA 1.00 x
Eugene, OR 1.00 x x Santa Rosa, CA 1.00 x
Flagstaff, AZ 1.00 x Seattle-Tacoma-Bellevue, WA 1.00 x x
Fort Collins, CO 1.00 x x Sebastian-Vero Beach, FL 1.00 x
Fresno, CA 1.00 x Sebring, FL 1.00 x
Gainesville, FL 0.91 x Sierra Vista-Douglas, AZ 1.00 x
Gainesville, GA 1.00 Spokane-Spokane Valley, WA 0.87 x
Hanford-Corcoran, CA 1.00 x Springfield, IL 0.93 x
Hartford-West Hartford-East Hartford, CT 1.00 x Springfield, MA 1.00 x
Homosassa Springs, FL 1.00 x x Springfield, OH 1.00 x
Ithaca, NY 1.00 x x Stockton-Lodi, CA 1.00 x x
Jacksonville, FL 0.98 x Tampa-St. Petersburg-Clearwater, FL 1.00 x
Kahului-Wailuku-Lahaina, HI 1.00 x x The Villages, FL 1.00 x
Kingston, NY 1.00 x x Toledo, OH 0.92 x x
Lake Havasu City-Kingman, AZ 1.00 x x Trenton, NJ 1.00 x
Lakeland-Winter Haven, FL 1.00 x Tucson, AZ 1.00 x x
Lancaster, PA 1.00 x x Urban Honolulu, HI 1.00 x x
Las Vegas-Henderson-Paradise, NV 1.00 x Vallejo-Fairfield, CA 1.00 x
Los Angeles-Long Beach-Anaheim, CA 1.00 x x Vineland-Bridgeton, NJ 1.00 x x
Madera, CA 1.00 x Visalia-Porterville, CA 1.00 x
Merced, CA 1.00 x x Washington-Arlington-Alexandria, DC-VA-MD-WV 0.95 x
Miami-Fort Lauderdale-West Palm Beach, FL 1.00 x Worcester, MA-CT 1.00 x
Modesto, CA 1.00 x x Youngstown-Warren-Boardman, OH-PA 0.80 x x
Napa, CA 1.00 x Yuba City, CA 1.00 x
Naples-Immokalee-Marco Island, FL 1.00 x x Yuma, AZ 1.00 x
New Haven-Milford, CT 1.00 x

Notes: This table lists the Metropolitan Statistical Areas that are included in the final analysis sample along
with the share of the total 2010 owner-occupied housing stock for each MSA that is represented by the subset
of counties for which CoreLogic has consistent data coverage back to 1995.
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TABLE IA2
Number of Transactions Dropped During Sample Selection

Original number of Transactions 57,668,026

Dropped: Non-unique CoreLogic ID 50
Dropped: Non-positive price 3,309,100
Dropped: Duplicate transaction 618,129
Dropped: Subdivision sale 1,321,261
Dropped: Vacant lot 839,078

Final Number of Transactions 51,580,408

Notes: This table shows the number of transactions dropped at each stage of our sample-selection procedure.
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TABLE IA3
Mechanical Short-Term Volume Estimates

Year α̂buyy − α̂
buy
2000 Total Volume

Actual
Short-Term

Volume

Counterfactual
Short-Term

Volume

2000 0 2821596 512787 512787
2001 0.0003 2757954 499643 494741
2002 0.0008 2985550 556987 534342
2003 0.0014 3226968 614429 557701
2004 0.0023 3667997 772708 659111
2005 0.0027 3857236 909976 725847

2000–2005
growth

– 36.7% 77.5% 41.5%

Notes: Total Volume gives annual transaction counts in our analysis sample. Actual Short-Term Volume are
sales of properties for which the previous purchased occurred less than 36 months in the past. We estimate
αbuyy , a fixed effect for the propensity to sell a house having bought it in year y, using the regression equation

in Online Appendix B.1. In the counterfactual, we assume that αbuyy remains constant at its level in y = 2000
for y ∈ {2001, 2002, 2003, 2004, 2005}.
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TABLE IA4
Instrumental Variables Estimation of the Role of Short-Term Volume

Volume Boom Price Boom Price Bust

First Stage OLS IV OLS IV OLS IV

Short-Volume Boom 2.28*** 2.28*** 2.18*** 2.78*** -0.77*** -1.05***
(0.12) (0.18) (0.38) (0.57) (0.09) (0.13)

Old Share 1.69***
(0.26)

Young Share 0.66**
(0.32)

Number of Observations 102 102 102 102 102 102 102
R-squared 0.45 0.79 0.79 0.25 0.23 0.45 0.39
F-Statistic 39.95

Notes: This table presents OLS and IV regressions at the MSA level of price and volume housing cycle
measures on the change in short-holding-period volume from 2000 to 2005 relative to total volume in 2000.
In the IV regressions, Short-Volume Boom is instrumented with demographic data from the 2000 Census 5%
microdata. The instruments are the share of recent buyers under 35 and the share of recent buyers aged 65
or older. Census microdata was not available for 13 MSAs in our sample, hence the lower sample count in
this table. The first column presents the first-stage regression and F-statistic.
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TABLE IA5
House Price Appreciation and Speculative Buyer Shares (Monthly Panel VAR)

House Price Appreciation Rate

Lagged Price Appreciation 0.375*** 0.387*** 0.372***
(0.026) (0.027) (0.026)

Lagged Short-Buyer Share 0.021*** 0.023***
(0.005) (0.005)

Lagged Non-Occupant Share 0.009 0.006
(0.008) (0.006)

Short-Buyer Share

Lagged Price Appreciation 0.163*** 0.162***
(0.048) (0.048)

Lagged Short-Buyer Share 0.780*** 0.781***
(0.024) (0.023)

Lagged Non-Occupant Share 0.001
0.017

Non-Occupant Share

Lagged Price Appreciation 0.124*** 0.172***
(0.044) (0.045)

Lagged Short-Buyer Share -0.071***
(0.016)

Lagged Non-Occupant Share 0.892*** 0.900***
(0.025) (0.021)

Notes: This table presents estimates from MSA-by-month panel vector autoregressions (pVARs) describing
the relation between house price growth and the share of purchases made by non-occupant buyers and “short
buyers,” defined as buyers who will sell within three years of purchase. The left-hand-side variables are house
price appreciation from t− 1 to t, the short-buyer share of total volume in t, and the non-occupant share of
total volume in t. The right-hand-side variables are lagged versions of these variables. The sample includes
8,568 observations for 102 MSAs for which we can consistently identify non-occupant buyers. House price
appreciation has a mean of 0.84% and a standard deviation of 1.32%. Short-buyer share has a mean of 21.0%
and a standard deviation of 5.5%. Non-occupant share has a mean of 32.8% and a standard deviation of
18.9%. Column (1) includes only house price appreciation and the short-buyer share. Column (2) includes
only house price appreciation and the non-occupant share. Column (3) includes both speculative volume
measures. The sample period includes the boom and quiet, which runs from January 2000 through December
2006. Regressions include MSA and month fixed effects and thus report the average autoregressive relations
within MSAs over time. We seasonally adjust house prices by removing MSA-by-calendar-month fixed effects
before computing house price growth. Standard errors are clustered at the MSA level.
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TABLE IA6
Speculators and Housing Market Outcomes (Extra Listing Outcomes)

Panel A. Propensity to List

∆ New Listings Boom ∆ New Listings Quiet

Short-Volume Boom 0.270 0.649***
(0.182) (0.160)

Non-Occupant Volume Boom 0.115 0.308***
(0.092) (0.080)

Number of Observations 57 48 57 48
R-squared 0.038 0.033 0.229 0.243

Panel B. Sale Probability

∆ P(Sale) Boom ∆ P(Sale) Quiet

Short-Volume Boom 0.142*** -0.163***
(0.032) (0.031)

Non-Occupant Volume Boom 0.058*** -0.047**
(0.017) (0.018)

Number of Observations 57 48 57 48
R-squared 0.268 0.206 0.332 0.122

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures at
the MSA level. Short-Volume Boom has a mean of 16.0% and a standard deviation of 12.9%. Non-Occupant
Volume Boom has a mean of 29.3% and a standard deviation of 27.1%. ∆ New Listings Boom is defined as
the change in the flow of listings from 2003 through 2005. ∆ New Listings Quiet is defined as the change
in the flow of listings from 2005 through 2007. These outcomes correspond to listing propensities among
existing homeowners. ∆ P(Sale) Boom is defined as the change in the probability of sale among the observed
stock of listings from 2003 through 2005. ∆ P(Sale) Quiet is defined as the change in the probability of sale
among the observed stock of listings from 2005 through 2007. To aid interpretation of these relations, we
scale the change in outcomes for all quantity measures relative to total volume in 2003. We do not scale the
sale probability. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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TABLE IA7
Speculative Booms and Housing Market Outcomes (Sand State Control)

Panel A. MSA-Level Prices

Price Boom Price Bust

Short-Volume Boom 1.022*** -0.237***
(0.272) (0.061)

Non-Occupant Volume Boom 0.228 -0.044
(0.142) (0.032)

Number of Observations 115 102 115 102
R-squared 0.514 0.453 0.696 0.662

Panel B. MSA-Level Inventories

∆ Listings Boom ∆ Listings Quiet

Short-Volume Boom -1.581 4.276***
(1.163) (1.461)

Non-Occupant Volume Boom -0.206 1.930***
(0.525) (0.642)

Number of Observations 57 48 57 48
R-squared 0.034 0.020 0.337 0.440

Panel C. MSA-Level Volume Quiet and Bust

∆ Volume Quiet + Bust Foreclosures Bust

Short-Volume Boom -1.145*** -0.233
(0.105) (0.377)

Non-Occupant Volume Boom -0.516*** -0.451**
(0.053) (0.185)

Number of Observations 115 102 115 102
R-squared 0.533 0.505 0.317 0.333

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures
at the MSA level. The table follows Table 2 while adding a control for “Sand States,” which is an indicator
for MSAs in Arizona, California, Florida, and Nevada.
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TABLE IA8
Speculators and Housing Market Outcomes (Extra Listing Outcomes, Sand State Control)

Panel A. Propensity to List

∆ New Listings Boom ∆ New Listings Quiet

Short-Volume Boom 0.050 0.431**
(0.198) (0.171)

Non-Occupant Volume Boom 0.040 0.228***
(0.087) (0.072)

Number of Observations 57 48 57 48
R-squared 0.131 0.213 0.323 0.451

Panel B. Sale Probability

∆ P(Sale) Boom ∆ P(Sale) Quiet

Short-Volume Boom 0.146*** -0.086***
(0.036) (0.028)

Non-Occupant Volume Boom 0.058*** -0.021
(0.018) (0.013)

Number of Observations 57 48 57 48
R-squared 0.268 0.206 0.598 0.607

Notes: This table reports estimates of the relation between speculative volume and housing cycle measures
at the MSA level. The table follows Table IA6 while adding a control for “Sand States,” which is an indicator
for MSAs in Arizona, California, Florida, and Nevada.
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TABLE IA9
All-Cash Buyer Shares and Mean LTV by Buyer Type

Transaction-Level MSA-Level

All Months All Months Boom Quiet Bust

All-Cash Buyer Share

Short Buyers 0.29 0.38 0.29 0.28 0.52
(0.21) (0.16) (0.17) (0.20)

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50
(0.18) (0.15) (0.14) (0.18)

All Buyers 0.20 0.25 0.22 0.20 0.30
(0.16) (0.15) (0.14) (0.16)

Mean LTV

Short Buyers 0.59 0.52 0.60 0.59 0.41
(0.40) (0.18) (0.13) (0.13) (0.17)

Non-Occupant Buyers 0.50 0.48 0.52 0.54 0.41
(0.41) (0.14) (0.12) (0.11) (0.15)

All Buyers 0.65 0.62 0.64 0.64 0.59
(0.36) (0.13) (0.12) (0.11) (0.14)

Mean LTV | LTV > 0

Short Buyers 0.84 0.85 0.84 0.82 0.85
(0.16) (0.06) (0.05) (0.04) (0.07)

Non-Occupant Buyers 0.81 0.82 0.82 0.80 0.82
(0.17) (0.06) (0.06) (0.05) (0.06)

All Buyers 0.82 0.83 0.82 0.80 0.85
(0.16) (0.05) (0.04) (0.04) (0.05)

Notes: This table presents statistics on LTV ratios and the share of buyers of various types who purchased
their homes without the use of a mortgage. In column 1, statistics are measured at the transaction level
and includes all transactions recorded between January 2000 and December 2011 from the CoreLogic deeds
records described in Section 1.1. The first row of each panel includes only transactions by homebuyers
who are observed to have sold the home within three years of purchase. The second row of each panel
includes only non-occupant buyers. The third row of each panel includes all buyers. In columns 2–5, means
are first calculated at the MSA-by-month level and then averaged across MSA-months within a given time
period. The standard deviation of these MSA-month means is reported in parentheses. Column 2 includes
all MSA-months between January 2000 and December 2011. Column 3 includes only MSA-months between
January 2000 and August 2005. Column 4 includes only MSA-months between August 2005 and December
2006. Column 5 includes only MSA-months between December 2006 and December 2011. All statistics are
calculated in the full sample of 115 MSAs with the exception of those for non-occupants, which are calculated
in the sample of 102 MSAs with valid non-occupancy data.
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TABLE IA10
Model counterfactuals

All long-term buyers All occupants

Outcome Baseline No occupant Occupant No short-term Short-term
adjustment adjustment adjustment adjustment

Price boom 14.5 8.7 8.7 9.4 14.6
Price bust −8.2 −0.4 −0.4 −0.6 −8.3
Volume boom 5.8 2.9 2.9 2.1 5.8
Listings, end of boom −1.3 −3.1 −3.1 −0.2 −1.3
Listings, end of quiet 1.4 0.4 0.4 0.0 1.4
Short volume boom 14.1 3.4 3.4 6.4 14.1
Non-occupant volume boom 12.3 3.6 3.6 – –
Sale probability boom 7.1 6.0 6.0 2.3 7.1

Notes: We report 100 times changes in log outcomes between treatment and control simulations. See notes
to Table 6 for outcome definitions. A two-sided minimum for prices does not occur in the 48 analysis periods
in the fourth column, so we extend the analysis 60 additional periods to find such a minimum in order to
measure the price bust. The counterfactals involve different values of the underlying distribution of potential
buyers, βn,j , that the text describes. We alter κ in each counterfactual to maintain a zero demand error
while keeping other parameters the same. The baseline values correspond to Figure 11.
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TABLE IA11
Robustness to larger occupant premium (µ1)

µ1 = 0.033 µ1 = 0.066

Outcome Baseline
All

long-term
buyers

All
occupants

Baseline
All

long-term
buyers

All
occupants

Price boom 14.0 8.7 14.6 12.8 8.6 14.6
Price bust −7.6 −0.4 −8.3 −5.6 −0.3 −8.3
Volume boom 5.6 2.9 5.8 4.9 2.9 5.8
Listings, end of boom −1.2 −3.1 −1.3 −1.0 −3.0 −1.3
Listings, end of quiet 1.3 0.4 1.4 0.9 0.3 1.4
Short volume boom 13.8 3.4 3.4 12.5 3.4 14.1
Non-occupant volume boom 11.3 5.6 – 7.5 9.1 –
Sale probability boom 6.8 6.0 7.1 6.0 5.9 7.1

Notes: We report 100 times changes in log outcomes between treatment and control simulations. See notes
to Table 6 for outcome definitions. For each value of µ1, we re-choose the other parameters in Table 5
by matching the targets in Table 4 other than non-occupant boom/occupant boom. The Baseline column
reports outcomes under each new set of parameters. In the All long-term buyers column, we further change
the βn,j distribution to put all weight on λ = 0.03 while keeping the occupancy distribution unchanged,
corresponding to the third column of results in Table IA10. In the All occupants column, we further change
the βn,j distribution to put all weight on n = 1 while keeping the λ distribution unchanged, corresponding
to the fifth column of results in Table IA10.
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